395 research outputs found

    Robots in Retirement Homes: Applying Off-the-Shelf Planning and Scheduling to a Team of Assistive Robots

    Get PDF
    This paper investigates three different technologies for solving a planning and scheduling problem of deploying multiple robots in a retirement home environment to assist elderly residents. The models proposed make use of standard techniques and solvers developed in AI planning and scheduling, with two primary motivations. First, to find a planning and scheduling solution that we can deploy in our real-world application. Second, to evaluate planning and scheduling technology in terms of the ``model-and-solve'' functionality that forms a major research goal in both domain-independent planning and constraint programming. Seven variations of our application are studied using the following three technologies: PDDL-based planning, time-line planning and scheduling, and constraint-based scheduling. The variations address specific aspects of the problem that we believe can impact the performance of the technologies while also representing reasonable abstractions of the real world application. We evaluate the capabilities of each technology and conclude that a constraint-based scheduling approach, specifically a decomposition using constraint programming, provides the most promising results for our application. PDDL-based planning is able to find mostly low quality solutions while the timeline approach was unable to model the full problem without alterations to the solver code, thus moving away from the model-and-solve paradigm. It would be misleading to conclude that constraint programming is ``better'' than PDDL-based planning in a general sense, both because we have examined a single application and because the approaches make different assumptions about the knowledge one is allowed to embed in a model. Nonetheless, we believe our investigation is valuable for AI planning and scheduling researchers as it highlights these different modelling assumptions and provides insight into avenues for the application of AI planning and scheduling for similar robotics problems. In particular, as constraint programming has not been widely applied to robot planning and scheduling in the literature, our results suggest significant untapped potential in doing so.California Institute of Technology. Keck Institute for Space Studie

    A mechanism for spatial perception on human skin

    Get PDF
    Our perception of where touch occurs on our skin shapes our interactions with the world. Most accounts of cutaneous localisation emphasise spatial transformations from a skin-based reference frame into body-centred and external egocentric coordinates. We investigated another possible method of tactile localisation based on an intrinsic perception of ‘skin space’. The arrangement of cutaneous receptive fields (RFs) could allow one to track a stimulus as it moves across the skin, similarly to the way animals navigate using path integration. We applied curved tactile motions to the hands of human volunteers. Participants identified the location midway between the start and end points of each motion path. Their bisection judgements were systematically biased towards the integrated motion path, consistent with the characteristic inward error that occurs in navigation by path integration. We thus showed that integration of continuous sensory inputs across several tactile RFs provides an intrinsic mechanism for spatial perception

    Saving the sagebrush sea: An ecosystem conservation plan for big sagebrush plant communities

    Get PDF
    Vegetation change and anthropogenic development are altering ecosystems and decreasing biodiversity. Successful management of ecosystems threatened by multiple stressors requires development of ecosystem conservation plans rather than single species plans. We selected the big sagebrush (Artemisia tridentata Nutt.) ecosystem to demonstrate this approach. The area occupied by the sagebrush ecosystem is declining and becoming increasingly fragmented at an alarming rate because of conifer encroachment, exotic annual grass invasion, and anthropogenic development. This is causing rangewide declines and localized extirpations of sagebrush associated fauna and flora. To develop an ecosystem conservation plan, a synthesis of existing knowledge is needed to prioritize and direct management and research. Based on the synthesis, we concluded that efforts to restore higher elevation conifer-encroached, sagebrush communities were frequently successful, while restoration of exotic annual grass-invaded, lower elevation, sagebrush communities often failed. Overcoming exotic annual grass invasion is challenging and needs additional research to improve the probability of restoration and identify areas where success would be more probable. Management of fire regimes will be paramount to conserving sagebrush communities, as infrequent fires facilitate conifer encroachment and too frequent fires promote exotic annual grasses. Anthropogenic development needs to be mitigated and reduced to protect sagebrush communities and this probably includes more conservation easements and other incentives to landowners to not develop their properties. Threats to the sustainability of sagebrush ecosystem are daunting, but a coordinated ecosystem conservation plan that focuses on applying successful practices and research to overcome limitations to conservation is most likely to yield success

    To See or Not to See: Prestimulus α Phase Predicts Visual Awareness

    Full text link
    We often fail to see something that at other times is readily detectable. Because the visual stimulus itself is unchanged, this variability in conscious awareness is likely related to changes in the brain. Here we show that the phase of EEG α rhythm measured over posterior brain regions can reliably predict both subsequent visual detection and stimulus-elicited cortical activation levels in a metacontrast masking paradigm. When a visual target presentation coincides with the trough of an α wave, cortical activation is suppressed as early as 100 ms after stimulus onset, and observers are less likely to detect the target. Thus, during one α cycle lasting 100 ms, the human brain goes through a rapid oscillation in excitability, which directly influences the probability that an environmental stimulus will reach conscious awareness. Moreover, ERPs to the appearance of a fixation cross before the target predict its detection, further suggesting that cortical excitability level may mediate target detection. A novel theory of cortical inhibition is proposed in which increased α power represents a “pulsed inhibition” of cortical activity that affects visual awareness

    Health-state utilities in a prisoner population : a cross-sectional survey

    Get PDF
    Background: Health-state utilities for prisoners have not been described. Methods: We used data from a 1996 cross-sectional survey of Australian prisoners (n = 734). Respondent-level SF-36 data was transformed into utility scores by both the SF-6D and Nichol's method. Socio-demographic and clinical predictors of SF-6D utility were assessed in univariate analyses and a multivariate general linear model. Results: The overall mean SF-6D utility was 0.725 (SD 0.119). When subdivided by various medical conditions, prisoner SF-6D utilities ranged from 0.620 for angina to 0.764 for those with none/mild depressive symptoms. Utilities derived by the Nichol's method were higher than SF-6D scores, often by more than 0.1. In multivariate analysis, significant independent predictors of worse utility included female gender, increasing age, increasing number of comorbidities and more severe depressive symptoms. Conclusion: The utilities presented may prove useful for future economic and decision models evaluating prison-based health programs

    Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical processing

    Full text link
    Alpha oscillations are ubiquitous in the brain, but their role in cortical processing remains a matter of debate. Recently, evidence has begun to accumulate in support of a role for alpha oscillations in attention selection and control. Here we first review evidence that 8–12 Hz oscillations in the brain have a general inhibitory role in cognitive processing, with an emphasis on their role in visual processing. Then, we summarize the evidence in support of our recent proposal that alpha represents a pulsed-inhibition of ongoing neural activity. The phase of the ongoing electroencephalography can influence evoked activity and subsequent processing, and we propose that alpha exerts its inhibitory role through alternating microstates of inhibition and excitation. Finally, we discuss evidence that this pulsed-inhibition can be entrained to rhythmic stimuli in the environment, such that preferential processing occurs for stimuli at predictable moments. The entrainment of preferential phase may provide a mechanism for temporal attention in the brain. This pulsed inhibitory account of alpha has important implications for many common cognitive phenomena, such as the attentional blink, and seems to indicate that our visual experience may at least some times be coming through in waves
    • 

    corecore